Янковский С. Концепции общей теории информации

Янковский С. Концепции общей теории информации

Глава 1. Общее понятие Информации

Слово «информация» известно в наше время каждому. Между тем вошло оно в постоянное употребление не так давно, в середине двадцатого века, с подачи Клода Шеннона. Он ввел этот термин в узком техническом смысле, применительно к теории связи или передачи кодов (которая получила название «Теория информации»). В настоящее время наполнение этого термина получило гораздо более глубокий смысл. И это не случайность, а следствие того, что только в последние десятилетия выявилась необходимость осознанной организации процессов движения и обработки того, что имеет общее название «Информация». Между тем само понятие «Информации» во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности. Представляется, что настало время рассмотреть обмен Информацией в целом как глобальное явление и попытаться найти его общие свойства и закономерности, знание которых может оказаться полезным в изучении каждой конкретной реализации этого явления.

Для того чтобы вывести наиболее общее определение понятия «Информация», выделим такое его свойство, которое с одной стороны было бы присущим любому его конкретному проявлению, и с другой стороны, позволяло бы отличать их от проявлений других понятий. Другими словами, мы хотим выделить необходимый и достаточный признак, по которому мы будем определять, относится ли то или иное явление к проявлению понятия «Информации».

Начнем с того, что построим самую простую схему из трех понятий: «Объект», «Среда» и «Взаимодействие». «Объект» – это нечто устойчивое во времени и ограниченное в пространстве интересующее нас как единое целое. «Среда» – это множество всех других потенциальных «Объектов», интересующих нас только с точки зрения их влияния на состоянии выделенного «Объекта» и обратного влияния «Объекта» на их состояния. «Взаимодействие» – это растянутый во времени процесс взаимозависимого изменения параметров состояния «Объекта» и «Среды». Эта схема является замкнутой в том смысле, что «Среда» включает в себя все потенциальные «Объекты» способные влиять на состояние выделенного «Объекта». Далее мы не будем брать в кавычки приведенные понятия.

В природе существует два фундаментальных вида взаимодействия: обмен веществом и энергией. Фундаментальность этих видов взаимодействия заключается в том, что все прочие взаимодействия происходят только через их посредство. Эти виды взаимодействия подчиняются закону сохранения. Сколько вещества и энергии один объект передал другому, столько тот и получил, и наоборот. Потери, происходящие при передаче, не рассматриваются, ибо потери вещества и энергии в замкнутой среде не возможны и то, что называют потерями, является отдельными актами взаимодействия с другими объектами той же среды. Среда замкнута именно в том смысле, что все взаимодействия происходят только внутри ее.

Энергетическое и вещественное взаимодействие объектов является симметричным, т.е. сколько один отдал столько же другой получил. Переходы между веществом и энергией не влияют на общий баланс, поскольку действуют законы сохранения константы их соотношения. Так же не влияет на общий баланс разрушение объекта в результате таких взаимодействий, так как опять же сохраняется сумма констант соотношения вещества и энергии, образовавшихся в результате разрушения частей (новых объектов).

Примем за аксиому, что на основе комбинации фундаментальных взаимодействий, между объектами может происходить взаимодействие более высокого порядка, при котором от одного к другому переходит некоторая субстанция и при этом потери одного не совпадают с приобретением другого. Такое взаимодействие является несимметричным. В предельном случае несимметричного взаимодействия при передаче субстанции между объектами один из них ее приобретает, а другой не теряет. Изменение количества энергии и вещества при этом естественно, будут иметь место, поскольку данный акт взаимодействия имеет в своей основе комбинацию фундаментальных видов взаимодействия обеспечивающих перенос субстанции.

Теперь сформулируем наиболее общее определение понятия Информации, от которого мы будем отталкиваться в дальнейшем.

Любое взаимодействие между объектами, в процессе которого один приобретает некоторую субстанцию, а другой ее не теряет называется информационным взаимодействием. При этом передаваемая субстанция называется Информацией.

Из этого определения следует два наиболее общих свойства Информации. Первое – Информация не может существовать вне взаимодействия объектов. Второе – Информация не теряется ни одним из них в процессе этого взаимодействия.

Глава 2. Эволюция информации.

Рассмотрим теперь возможное развитие информационного взаимодействия объекта со средой в зависимости от уровня развития самого объекта.

2.1. Неживые формы.

Все объекты в природе состоят из элементарных частиц, объединенных в более или менее сложные структуры. Поэтому все взаимодействия между объектами сводятся к взаимодействию элементарных частиц и происходят по законам физики микромира. Эти элементарные взаимодействия полностью симметричны. Собственно, именно эти элементарные взаимодействия и приводят к образованию разнообразных более или менее устойчивых структур на основе элементарных частиц. Эти структуры с определенного уровня устойчивости уже могут рассматриваться как самостоятельные объекты.

Взаимодействия этих объектов между собой складывается из большого числа взаимодействий составляющих их частиц. Свойства этих суммарных взаимодействий определяется совокупностью свойств составляющих их частиц и той структуры, в которую они объединены.

Можно сказать, что та часть взаимодействий частиц, которая служит для поддержания устойчивости объекта как структуры, определяет его как «вещь в себе». Другая часть, которая проявляется во взаимодействиях объекта в целом с другими объектами, определяет его как «вещь для других». Законы взаимодействия объектов вытекают, таким образом, из законов взаимодействий их частиц, но чем больше частиц, чем разнообразнее они и чем сложнее их взаимодействие в структуре объекта, тем сложнее выводятся законы общего взаимодействия из частных. При этом все большую роль играют статистические законы больших чисел, обеспечивающие возрастание устойчивости законов взаимодействия объектов в целом и с определенного уровня устойчивости эти законы уже можно рассматривать как самостоятельные не учитывающие законы каждого отдельного частичного взаимодействия. Так из законов взаимодействия элементарных частиц возникают законы взаимодействия атомов, молекул и т.д. до известных нам законов макромира и социальных законов. Законы взаимодействия объектов более высокого уровня строятся на основе статистической интеграции законов взаимодействия составляющих их объектов более низкого уровня. Кстати законы социального взаимодействия не столь устойчивы, так как количество элементов, составляющих взаимодействующие социумы недостаточно велико, чтобы устойчиво работали законы больших чисел.

Сформулированное представление о законах мироздания не подтверждает и не опровергает существование Бога, поскольку оно отвечает на вопрос «как?», а не на вопрос «почему?».

Обратимся опять к несимметричным взаимодействиям между объектами и конкретно к информационным. Еще раз напомним, что таковые возможны только как комплекс симметричных взаимодействий, в результате комбинации которых выделяется в самостоятельную единицу некая субстанция, называемая нами информацией. Мы будем рассматривать свойства этой субстанции, переходя от простых видов информационных взаимодействий к более сложным.

Примитивные виды информационного взаимодействия можно выделить уже в неживой природе. Таковым, например, является каталитическое взаимодействие. Оно состоит в том, что один объект, называемый катализатором, изменяет скорость протекания химической реакции между группой других объектов называемых реагентами, после чего сам катализатор остается неизменным по всем своим свойствам. Этот процесс можно представить, как примитивное информационное взаимодействие между катализатором и реагентами состоящее в том, что последние получают от первого некую информацию, которую они реализуют в виде изменения их собственного взаимодействия.

Этот примитивный вид информационного взаимодействия интересен тем, что с одной стороны он представляет собой не слишком сложный комплекс симметричных взаимодействий и сравнительно легко может быть выведен из них. Например, это взаимодействие может состоять из простой последовательности симметричных взаимодействий между катализатором и отдельными реагентами, в ходе которых он перераспределяет между ними вещество и энергию и тем самым организует взаимодействие между ними, оставаясь в итоге в своем прежнем состоянии. С другой стороны, в этом взаимодействии уже проявляются в примитивном виде присущие информационному взаимодействию основные факторы.

Первое. Информационное взаимодействие имеет в своей основе комплекс симметричных взаимодействий и таким образом информация между объектами переносится с помощью обмена веществом или энергией.

Формы вещества или энергии, с помощью которых переносится Информация будем называть информационными кодами или кратко – кодами.

Второе. Информационное взаимодействие может происходить только при определенном взаимном соответствии свойств объектов. Так в каждом каталитическом взаимодействии могут участвовать только объекты, обладающие необходимым для него набором свойств. Восприятие Информации на основе получаемых кодов определяется через возможность ее реализации в соответствии со свойствами принимающего объекта. От его свойств зависит в конечном итоге то, какую информацию он принимает, получая конкретный набор кодов.

Комплекс свойств объекта позволяющих ему воспринимать получаемые коды как некоторую информацию будем называть аппаратом интерпретации информационных кодов или кратко – аппаратом интерпретации.

Третье. Информация реализуется в принимающем объекте через связанное с ней определенное изменение его состояния (внутренних или внешних свойств). Причем это изменение возможно и без получения информации, но при этом оно будет менее вероятным. Информация способствует переходу принимающего ее объекта в одно из потенциально присущих ему состояний, т.е. является сообразной его свойствам. В рассмотренном простейшем случае сообразность информации принимающему объекту в значительной мере определяется самим наличием у него аппарата интерпретации, поскольку и то и другое основывается на одних и тех же свойствах объекта. Тем не менее, рискнем здесь развить утверждение о сообразности и сформулировать его усиление.

В широком смысле можно сказать, что информация принимаемая объектом необходимо является для него целесообразной.

Итак, на простейшем примере информационного взаимодействия мы показали три основных фактора, необходимых для его протекания. Это наличие кодов переносящих информацию, наличие аппарата интерпретации этих кодов у принимающего объекта и, наконец, обязательная целесообразность информации для принимающего объекта. Можно сказать, что информационное взаимодействие, это один из видов взаимодействий, связанных с переходом от объективного к субъективному. Это взаимодействия с независимо существующими от объекта явлениями, в которых он участвует как «вещь для других», но результат которых воспринимается им как «вещью в себе». Постараемся теперь проследить развитие этих факторов и свойств информационного обмена по мере усложнения участвующих в нем объектов и видов их взаимодействия.

2.2. Простейшие формы жизни.

Первым условием, отличающим живую форму от неживой, является наличие у нее возможности воспроизведения других форм, которые будут подобны ей самой по внутреннему строению и по видам взаимодействия с внешней средой. Для реализации этой возможности живая форма получает из внешней среды вещество и энергию и преобразовывает их внутри себя, создавая копии своих элементов и организуя их в структуру, где они будут взаимодействовать между собой так же, как они взаимодействовали в исходной форме. Эти действия означают постоянное изменение внутреннего состояния живой формы, при сохранении свойств ее взаимодействия с внешней средой. Кстати наличие постоянных внутренних изменений является основной причиной того, что живая форма в каждый следующий момент отличается от себя в предыдущем моменте и, в конце концов, ее свойства настолько изменяются, что она перестает существовать как таковая и происходит ее разрушение. Живые формы не столь долговечны, как неживые, в которых внутренние изменения обусловлены напрямую симметричными взаимодействиями с внешней средой.

Возьмем за объект простейшую живую форму – вирус. Его взаимодействие со средой обитания сводится к питанию (потреблению вещества), потреблению энергии, выделению отходов (в виде вещества и энергии), размножению (построению своей копии) и умиранию (распад на отдельные химические молекулы).

Вирус состоит из молекулы нуклеиновой кислоты и белковой оболочки, которые предотвращают распад друг друга. В этом состоит основное назначение их внутреннего взаимодействия. Нуклеиновая кислота играет главную роль в воспроизведении другого такого же вируса при наличии соответствующих условий внешней среды.

Нам известны вирусы, воспроизводящиеся только в среде живых клеток. Это не значит, что их не может существовать в других средах. Более того, вирус как более простая форма, нежели живая клетка должен был возникнуть как вид еще до появления одноклеточной формы жизни.

Механизм воспроизведения вирусов сводится к тому, что он, попадая в определенную среду, изменяет комплекс происходящих между ее объектами химических взаимодействий таким образом, что в их результате происходит синтез зрелых вирусных частиц – вирионов, из которых в определенных условиях образуются другие такие же вирусы. Этот вид взаимодействие вируса со средой подобен каталитическому взаимодействию, но имеет более высокий уровень сложности. Реагентами этого взаимодействия являются уже не простые химические молекулы, а более сложные высокомолекулярные соединения. Кодами, переносящими информацию, служат уже не простые физические объекты и элементарные энергетические влияния, а значительно более сложные по составу и структуре их комплексы. Действие аппарата интерпретации кодов основано здесь на столь сложных комплексах действий химических законов, что часто уже не представляется возможным вывести строгую зависимость одного от другого. В этом взаимодействии уже начинают проявляться биологические законы как более высокие по уровню сложности, нежели химические.

Принцип целесообразности информации по-прежнему имеет место в том смысле, что вся совокупность реакций ведущих к появлению нового вируса могла бы произойти и без участия такого же вируса, но стечение нужного комплекса обстоятельств для этого события гораздо менее вероятно чем для реагентов каталитического взаимодействия, то есть, может проявиться гораздо реже. Но видимо все-таки это случается. Среда высокомолекулярных соединений сама производит время от времени своих новых вирусов.

Информационное взаимодействие вируса со средой имеет еще одну принципиальную особенность, качественно отличающую его от каталитического взаимодействия. В последнем случае результат реакции не имеет никакого отношения к катализатору. Результат же информационного воздействия вируса на среду значим для вируса, поскольку обеспечивает поддержание его существования как вида. Здесь уже, хотя и в самом примитивном виде, проявляется четвертый фактор информационного обмена, который можно назвать направленностью передачи информации, или более широко – целенаправленностью.

Целенаправленность информационного взаимодействия, это фактор его значимости для существования конкретного объекта передающего информацию или для существования его вида.

2.3. Клеточная форма жизни.

Принципиальным отличием клеточной формы жизни от вирусной является объединение в ней, как в единой структуре, всех компонент, взаимодействие которых обеспечивает воспроизведение другой такой же формы. Конечно, для обеспечения такого внутреннего взаимодействия компонент клетки необходима возможность взаимодействия ее как целого с внешней средой. Непосредственно для существования и самовоспроизведения клетки ей необходимы только симметричные взаимодействия, в ходе которых она получает из внешней среды вещество и энергию, поддерживающие взаимодействие ее компонент.

Внутренний механизм самовоспроизведения клетки является развитием механизма воспроизведения вируса. В клетке имеется основной элемент, целенаправленное информационное воздействие которого на прочие элементы приводит к построению другого такого же элемента. Но этим еще не исчерпываются его функции. Этот элемент вступает с остальными элементами клетки в такие информационные взаимодействия, которые направляют взаимодействие между ними на создание всего комплекса элементов клетки. Таким образом, можно сказать что, действуя подобно вирусу в направлении самовоспроизведения, этот основной элемент клетки организует еще и воспроизведение среды, в которой его собственное воспроизведение становится возможным.

Этот основной элемент клетки представляет собой разновидность молекулы нуклеиновой кислоты, а именно, молекулу дезоксирибонуклеиновой кислоты (ДНК). Исследование строения ДНК и механизмов его взаимодействия с другими элементами клетки, – это предмет Генетики. Отметим лишь, что ДНК состоит из элементов, называемых нуклеотидами, отдельные группы которых, участвуя в разных информационных взаимодействиях, организуют отдельные этапы процесса воспроизведения клетки и в совокупности организуют весь процесс.

Само первичное возникновение клетки как живой формы, произошло, потому что оно могло произойти в определенных, хотя и очень маловероятных, ситуациях взаимодействия вируса со средой. В какой-то момент функционирование некоего вируса привело к тому, что в одной оболочке оказалась молекула его ДНК и те объекты, с которыми он вступал в информационные взаимодействия, причем каждый из них мог возникать как реализация информационного взаимодействия вируса с другими объектами. Стечение всех этих обстоятельств могло случиться настолько редко, что за всю истории развития жизни на нашей планете произошло, видимо всего несколько таких случаев образования клеток, которые обладали бы достаточной устойчивостью существования и воспроизведения себя как вида. При этом устойчивость не оказалась настолько полной, (закон больших чисел действовал не в достаточной для этого степени), что бы воспроизведение клеток вело бы в каждом случае к появлению полной копии родительской клетки. Отсюда стали появляться новые клетки, наиболее устойчивые из которых сохранялись как виды. Это и послужило основой возникновения того многообразия форм жизни, которые сейчас существуют.

Живая клетка интересна тем, что является почти замкнутой средой с точки зрения происходящих в ней внутренних информационных взаимодействий. Число их достаточно ограничено, что дает возможность изучать каждое из них отдельно и всю взаимосвязанную их структуру в целом. Это конечно отдельная задача, а мы рассмотрим лишь некоторые свойства этих взаимодействий, важные с точки зрения развития их значения в более сложных информационных процессах.

Информационное взаимодействие ДНК с каким-либо элементом клетки происходит не через непосредственные симметричные взаимодействия одного с другим, а опосредованно через промежуточные взаимодействия с некоторыми другими элементами. Таковыми в клетке служат несколько видов молекул рибонуклеиновой кислоты (РНК). При взаимодействии с ДНК они приобретают такие свойства, которые при последующем взаимодействии их с другими элементами клетки приводят к передаче им информации уже непосредственно реализуемой в процессах поддержания жизни или воспроизведения клетки. Таким образом, коды, с помощью которых осуществляется передача информации от ДНК, не совпадают с кодами, с помощью которых принимается информация. Промежуточный этап информационного взаимодействия может быть растянут во времени, и момент передачи информации не совпадает с моментом ее получения. Наличие этого промежутка и перекодировки информации создают предпосылки искажения (в том числе и возможность потери) информации в процессе ее перехода от одного объекта к другому. Искажение информации ведет к снижению целесообразности для объекта изменений, происходящих в нем при ее реализации. Для клетки это чревато нарушением общей устойчивости ее жизнедеятельности и разрушением.

Для того чтобы клетка сохранялась как вид в течение длительного времени, должен существовать механизм защиты информации от искажений, которые происходят время от времени. Такой механизм может иметь различную природу, но самое главное, что он должен быть заложен и в свойствах самой передаваемой информации.

Таким свойством является избыточность информации. (Это не единственная ее полезная роль в процессе информационного взаимодействия.) Избыточность может быть реализована через простое повторение кодов или более сложным образом – через самовосстанавливающиеся коды. Самовосстановление кодов основывается на том, что в передаче участвуют не только коды, непосредственно несущие информацию, но и дополнительные, по которым при приеме информации, проверяется верность основных кодов, и, если это необходимо и возможно, информация реализуется таким же образом, как будто коды не были искажены. Собственно, восстанавливаются не сами коды, а в допустимых пределах их искажений и потерь сохраняется переносимая ими информация. Деление на основные и дополнительные коды достаточно условно. Генетические исследования показывают, что одна и та же информация может передаваться различными участками одной ДНК, и исключение каких-либо из них не приводит к нарушениям ее функций. Возможность использования свойства избыточности информации, естественно, требует наличия соответствующих свойств у объекта, принимающего информацию.


    ДЛЯ ОТРИМАННЯ ПОВНОГО ТЕКСТУ КНИГИ - ОФОРМІТЬ ЗАЯВКУ